微信公众号

官网二维码

中国癌症防治杂志 ›› 2025, Vol. 17 ›› Issue (4): 446-451.doi: 10.3969/j.issn.1674-5671.2025.04.08

• 论著 • 上一篇    下一篇

软组织肉瘤患者蒽环类药物致心脏毒性的影响因素分析及预测模型的构建

  

  1. 空军军医大学西京医院肿瘤科
  • 出版日期:2025-08-25 发布日期:2025-09-12
  • 通讯作者: 张红梅 E?mail:zhm@ffmu.edu.cn

Analysis of influencing factors for anthracycline⁃induced cardiotoxicity in patients with soft tissue sarcoma and development of a predictive model

  • Online:2025-08-25 Published:2025-09-12

摘要: 目的 探讨软组织肉瘤(soft tissue sarcoma,STS)患者接受蒽环类药物治疗后发生心脏毒性(anthracycline⁃induced cardiotoxicity,AIC)的影响因素,并构建和验证预测模型。方法 回顾性分析2013年1月至2023年12月在西京医院接受蒽环类药物治疗STS患者的临床资料。采用Lasso回归分析筛选关键变量,Logistic回归分析确定预测因素以构建列线图预测模型。采用Bootstrap法进行1 000次重复抽样内部验证模型一致性,受试者工作特征曲线下面积(area under the curve,AUC)评估模型区分度,校准曲线评价模型拟合度,决策曲线分析评估临床应用性。结果 共纳入153例患者,其中16(10.5%)例出现AIC。基于Lasso⁃Logistic回归分析结果,结合样本量和统计学显著性,最终确定年龄(OR=5.96,95%CI:1.55~22.93)、甘油三酯(OR=3.02,95%CI:1.47~6.12)以及联合应用右丙亚胺(OR=0.10,95%CI:0.02~0.46)为预测变量,据此构建的列线图预测模型显示AUC为0.859,区分能力、校准度和临床应用性均良好。结论 本研究基于年龄、甘油三酯及联合应用右丙亚胺情况构建STS患者AIC的列线图预测模型,该模型展现出良好的预测效能,为STS患者AIC风险的识别提供了潜在工具。

关键词: 软组织肉瘤, 蒽环类药物, 心脏毒性, 影响因素, 预测模型

Abstract: Objective To investigate the influencing factors for anthracycline⁃induced cardiotoxicity (AIC) in patients with soft tissue sarcoma (STS), and to develop and validate a predictive model. Methods The methodology involved a retrospective analysis of  clinical data from STS patients who received anthracycline treatment at Xijing Hospital from January 2013 to December 2023. Key variables were identified using Lasso regression analysis. And predictive factors were determined through Logistic regression to construct a Nomogram prediction model. Internal validation was performed using the Bootstrap test with 1,000 resamples. The model's discrimination was assessed via the area under the curve (AUC) of receiver operating characteristic, calibration was evaluated using calibration curves, and clinical applicability was assessed through decision curve analysis. Results A total of 153 patients was included, among whom 16 (10.5%) experienced AIC. Based on the results of Lasso⁃Logistic regression analysis, and considering sample size and statistical significance, age (OR=5.96, 95%CI:1.55-22.93), triglyceride (OR=3.02, 95%CI:1.47-6.12), and combined dexrazoxane (OR=0.10, 95%CI:0.02-0.46) were identified as significant predictive variables. The Nomogram prediction model developed using these variables demonstrated an AUC of 0.859, indicating robust discrimination, calibration, and clinical applicability. Conclusions This study developed a Nomogram prediction model for AIC in STS patients based on the variables of age, triglyceride, and combined dexrazoxane. The model exhibits strong  predictive performance, providing a potential tool for identifying the risk of AIC in STS patients.

Key words: Soft tissue sarcoma, Anthracyclines, Cardiotoxicity, Influencing factor, Prediction model

中图分类号: 

  •