微信公众号

官网二维码

中国癌症防治杂志 ›› 2025, Vol. 17 ›› Issue (5): 532-540.doi: 10.3969/j.issn.1674-5671.2025.05.02

• 新技术新方法专栏 • 上一篇    下一篇

医学大语言模型在肿瘤诊断中的应用与发展趋势

  

  1. 深圳大学电子与信息工程学院;兰州大学第二医院泌尿外科;深圳大学附属华南医院实验研究部
  • 出版日期:2025-10-25 发布日期:2025-12-03
  • 通讯作者: 刘晓鸿 E-mail:xhliu@szu.edu.cn
  • 基金资助:
    国家自然科学基金项目(82403609;82522048;62501406)

Applications and development of medical large language models in cancer diagnosis

  • Online:2025-10-25 Published:2025-12-03

摘要: 医学大语言模型(large language models,LLMs)的出现为肿瘤诊断的智能化带来了新机遇。相较于依赖经验及规则的传统临床决策支持系统,LLMs能够捕捉多模态医学数据中的深层语义与潜在规律。大模型技术体系正推动肿瘤诊断智能化,提高决策的准确性和推理逻辑性,提高医学知识的组织性,增强医师对复杂病例的判断力。尽管模型在可解释性、可靠性和隐私安全方面仍有待提升,但是其发展为智能医疗的临床落地奠定了坚实基础。本文将梳理医学大语言模型在肿瘤诊断中的关键进展,包括模型架构优化、领域适配及多模态融合等技术,及其在病历信息抽取、影像与病理联合分析、数字诊断顾问等场景中的应用潜力,为肿瘤研究与临床实践提供系统化参考依据。

关键词: 肿瘤诊断, 临床决策支持系统, 医学大语言模型, 多模态融合, 数字诊断顾问

Abstract: The advent of medical large language models (LLMs) has created new opportunities for intelligent cancer diagnosis. Compared to traditional clinical decision support systems that rely on empirical knowledge and rule⁃based methodologies, LLMs possess the capability to capture intricate semantic representations and latent relationships within multimodal clinical data. The large⁃model technology framework is driving the intelligent transformation in tumor diagnosis, enhancing the accuracy and logical reasoning of clinical decisions, improving the organization of medical knowledge, and strengthening physicians’ analytical capabilities in complex cases. Despite persistent challenges in interpretability, reliability, and data privacy persist, these models are establishing a robust foundation for the clinical realization of intelligent medicine. This article summarizes critical  advances in the application of medical LLMs for cancer diagnosis, including progress in model architecture optimization, domain adaptation, and multimodal data integration. It explores the potential in key scenarios such as clinical information extraction, joint imaging⁃pathology analysis, and digital diagnostic support, providing systematic reference for cancer research and clinical practice.

Key words: Cancer diagnosis, Clinical decision support systems, Medical large language models, Multimodal data integration,  ,
Digital diagnostic support

中图分类号: 

  • R730.4