微信公众号

官网二维码

中国癌症防治杂志 ›› 2024, Vol. 16 ›› Issue (4): 481-486.doi: 10.3969/j.issn.1674-5671.2024.04.15

• 临床研究 • 上一篇    下一篇

基于机器学习的腮腺肿瘤患者术后面瘫的危险因素分析

  

  1. 广西医科大学第八附属医院,贵港市人民医院健康管理(体检)中心
  • 出版日期:2024-08-25 发布日期:2024-08-23
  • 通讯作者: 徐素娟 E-mail:438991288@qq.com
  • 基金资助:

Machine learning-based analysis of risk factors for postoperative facial paralysis in patients with parotid tumors

  • Online:2024-08-25 Published:2024-08-23

摘要: 目的 利用机器学习技术分析腮腺肿瘤患者术后面瘫的影响因素。方法 回顾性收集贵港市人民医院病案系统中2013年1月至2023年12月腮腺肿瘤患者的资料。采用LASSO回归对术后面瘫的潜在危险因素进行筛选,随后通过无序多分类Logistic回归分析术后面瘫的危险因素。结果 395例腮腺肿瘤患者中54例发生面瘫,其中40例为短暂性面瘫,14例为永久性面瘫。无序多分类LASSO回归在最佳λ值下筛选出26个腮腺肿瘤患者术后面瘫的危险因素,将其纳入无序多分类Logistic回归分析,结果显示肿瘤位置、肿瘤性质、术前肿物压痛、吸烟史、谷氨酰转移酶水平、氯离子浓度、镁离子浓度、部分凝血活酶时间等是短暂性面瘫发生的影响因素(均P<0.05);肿瘤性质、肿瘤体积、年龄、身体质量指数是永久性面瘫发生的影响因素(均P<0.05)。结论 本研究利用机器学习技术识别出腮腺肿瘤患者术后面瘫的关键影响因素,有助于早期识别术后面瘫发生的高危人群,为预防和预测面瘫的发生提供科学依据。

关键词: 腮腺肿瘤, 术后面瘫, 危险因素, 机器学习

Abstract: Objective To analyze the influencing factors of postoperative facial paralysis in patients with parotid tumors by using machine learning technique. Methods The data of patients with parotid tumors in the medical record system of Guigang People's Hospital from January 2013 to December 2023 were collected retrospectively. LASSO regression was used to screen the potential risk factors of postoperative facial paralysis, followed by an disordered multi⁃classification Logistic regression analysis to determine the risk factors of postoperative facial paralysis. Results 54 of 395 patients with parotid tumors experienced facial paralysis, including 40 cases of transient facial paralysis and 14 cases of permanent facial paralysis. Disordered multi⁃classification LASSO regression identified 26 risk factors of postoperative facial paralysis in patients with parotid tumors under the optimal lambda value, which were included in the disordered multi⁃classification Logistic regression analysis. The results showed that tumor location, tumor nature, preoperative mass tenderness, smoking, glutamyl transferase, chloride concentration, magnesium concentration, and partial thromboplastin time were the influencing factors for transient facial paralysis (all P<0.05); tumor nature tumor volume, age, and body mass index were influencing factors for permanent facial paralysis (all P<0.05). Conclusions The key influencing factors of postoperative facial paralysis in patients with parotid tumors are identified by using the machine learning technique, helping the early identification of high⁃risk groups for postoperative facial paralysis and providing a scientific basis for the prevention and prediction of facial paralysis.

Key words: Parotid tumor, Postoperative facial paralysis, Risk factors, Machine learning

中图分类号: 

  • R739.87